
LLNL-TR-662004

Steering Languages and Future
Science Codes

L. E. Busby

October 3, 2014

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Steering Languages and
Futur e Science Codes

Lee Busby, LLNL
busby1@llnl.gov

September 15, 2014
Rev. 11

Contents

1. Summary Recommendations . .1
2. Structure of the Paper. .1
3. What is a Steering Language? Why Use One? .2

3.1. Background .2
3.2. Your Point of View .2

4. Recommendation: Build a Pilot Code Using Lua .4

4.1. Comparison of Source Code Size . .5
4.2. Speed and Memory Benchmarks .5

Expression Parsers. .5
Scimark Benchmarks . .6
Crosscheck. .9

5. Recommendation: Use Python More, not Less .9
6. Recommendation: Consider Some Ideas from The Basis System 10

6.1. The Basis Run Time Database . .11
6.2. The Basis Data Description Language .11
6.3. The Basis User Interface Construction System .11
6.4. Basis Summary . .12

7. Conclusion. .12

7.1. Acknowledgements. .13

8. References and Additional Reading . .14
9. Appendix A: Expression Parser Benchmarks .17
10. Appendix B: Wrapping Your Code .18
11. Appendix C: Comments on Some Current Languages and Programs 20

- i -

List of Tables

Table 1 - Two Questions for AX and B .3
Table 2 - Some Steering Language Use Cases. .3
Table 3 - Self-identification by Division .4
Table 4 - Code Sizes for Some Language Implementations.5
Table 5 - Summary Expression Parser Benchmark Results. .6
Table 6 - Scimark Results: Ratios to cc-O2 Values, plus Peak Memory(MB) 6
Table 7 - Full Expression Parser Benchmark Results. .17
Table 8 - Interface Code Counts for Several Systems .18

- ii -

Steering Languages and
Futur e Science Codes

Lee Busby, LLNL
busby1@llnl.gov

1. Summary Recommendations
• Build a pilot code using Lua as the steering language.1 Standard Lua was 3.5× smaller

and 10× faster than Standard Python across five Scimark benchmarks. It may be more
suitable for static linking and as an embedded steering language. It is mature, well-doc-
umented, and widely used in many areas, with a recent uptick in scientific users and
codes. These points and others will be more fully developed in the sections that follow.

• Use Python more, not less. Python is a very good choice as a steering language. More-
over, it has become an excellent choice as a primary programming language for many
application areas and uses. There are a wide variety of tools and techniques now that
effectively allow the scientist/programmer to write (just) Python, then selectively
choose how and how much to optimize their code as needed for speed. Consider pur-
chasing support for a comprehensive Python user environment such as Anaconda
[CON1] for a period of time.

• Consider some lessons from three components of the Basis project, and try to carry
some of their good ideas into future work:
A) The Basis run-time database (RDB), which is shared with and fully accessible from

compiled code, using an ISO C API;
B) A data description language (DDL) that developers use to define and initialize the

RDB;
C) A domain specific language (DSL) for use in building the user interface for each

project.

The first two bullets taken together are not intended to suggest an either/or future. Python
and Lua can work together well if and when that becomes desireable. However, the inter-
faces between codes will continue to be important. Interfaces that emphasize native types
will usually be a good choice if language interoperability is important.

2. Structure of the Paper
The rest of the paper is in five main parts. Some general background information and ter-
minology is given in the next section. This will hopefully make it easier to follow the dis-
cussion in the remainder. Each of the three recommendations above will be discussed

1Disclaimer: The author is participating in an ongoing evaluation of Lua as a steering language for
the Blast [KOL1] code.

-1-

L. Busby STEERING LANGUAGES, 8/2014

separately, with a final section for concluding remarks and acknowledgements. Three
appendices contain information to extend or complete earlier material.

3. What is a Steering Language? Why Use One?

3.1. Background

In 1984, Paul Dubois [DUB1] introduced Basis and the idea of steering languages to
LLNL. His work preceded Perl (1987), Tcl (1988), and Python (1989) by some years.
MATLAB [MOL1] the company was also founded in 1984. Basis had some similarities
with MATLAB, but it went much further in defining ways to connect an interactive com-
mand interpreter to compiled code packages. John Ousterhout’s 1990 paper [OUS1]
introduced the idea of a language-in-a-library (Tcl), embeddable in other tools, to many
people outside our scientific community. He went on in 1998 [OUS2] to divide (most)
programming languages into two main categories: Weakly typed scripting languages like
Tcl, used on their own for rapid development, or to ‘‘glue’’ together components written
in strongly typed system languages like C. He suggested that ‘‘Scripting and system pro-
gramming are symbiotic’’, and, to paraphrase, that scripting languages allowed many
more, and more casual programmers, to make effective use of computing power.
Python hardly needs further introduction now. Lua [LUA1], [IER1] is less well-known. It
began in 1993 as a configuration language, mostly for industrial clients of Tecgraf, the
Computer Graphics Technology Group of PUC-Rio in Brazil. It slowly evolved into a
complete language over the next 7-10 years. In a 2011 paper, Ierusalimschy et al. [IER2]
distinguish two ways that a scripting language can be integrated with code written in a
system language: In the first form - extending - the main program is written in the script-
ing language, which is extended using libraries and functions written in the system lan-
guage. In the second form - embedding - the main program is written in the system
language, now called the host program, which can run scripts and call functions defined
in the scripting language. Although this terminology is not precise, (most real codes have
some of both types of integration), I will use their definitions for those terms in the rest of
the paper. Also, the term steering language implies a context where two languages are
being used together, one to ‘‘steer’’ the other, whereas scripting language may be just the
one. It’s often fine to write complete programs using (only) Python, Lua, or Basis. I will
use those terms synonymously, unless the context requires otherwise.

3.2. Your Point of View

Ok, let’s test your knowledge so far with a short quiz. The proper form for a next genera-
tion physics code is:

A) An ensemble of mostly independent compiled packages, glued together with and
extending a central steering language that ‘‘knows all, sees all’’;

B) A coherent compiled core, composed of packages designed to know about one another
and work together well, along with an embedded scripting language used for problem
setup and such other tasks as found to be necessary;

C) Sometimes one, sometimes the other - I just do not know.

-2-

L. Busby STEERING LANGUAGES, 8/2014

(My own answer is probably C, by way of A.) The small questionnaire that I passed
around in April was partly for fun, to introduce my study, but it did make clear that other-
wise reasonable people have different opinions. Here is the split between AX- and
B-division responses to a couple of the questions posed then:

Question AX B

The steering language is → Very Important : So So 16:3 3:3

Python is the obvious choice → Yes! Python forever : Well, okay 12:5 2:4

Table 1 - Two Questions for AX and B

That is hardly significant in any statistical sense, of course, and if my sample failed to
account for your opinions, I am sorry. However, our differences, such as they may be, are
not just confined to LLNL. Game developer Tim Sweeney [SWE1] identified four reasons
why mixing a scripting language into compiled code might create problems, which are
paraphrased here:
• [As a system grows] there is increasing pressure to expose more of its native C++ fea-

tures to the scripting environment. [The system] eventually grows into a desert of com-
plexity and duplication.

• There is a seemingly exponential increase in the cost and complexity [of the] “interop”
layer where C++ and script code communicate. [Interop] becomes very tricky for
advanced data types such as containers

• Developers seeking to take advantage of [...] native C++ features end up dividing their
code unnaturally between the script world and the C++ world

• Developers need to look at program behavior holistically, but quickly find that script
debugging tools and C++ debugging tools are separate and incompatible.

Sweeney and his team felt strongly enough about these issues to rip the existing (propri-
etary) scripting language back out of their popular C++ game engine, after putting it in
and living with it for some years. Although I feel that scripting languages do bring net
benefit to our physics codes, I acknowledge Sweeney’s points, and allow that I have
encountered them in the past. The questionnaire also asked you to rate the relative impor-
tance of several ‘‘use cases’’ for a steering language. Here are the average scores from 25
replies. (In this case, AX- and B-division responses were lumped together.)

Use Case Mean Score(L=1,M=2,H=3)

Set up job input, check syntax 2.70
Postprocess output 2.61
Make custom output files 2.50
Steer code during run 2.44
Play around, learn code 1.78
Handle unusual input, etc. 1.86

Table 2 - Some Steering Language Use Cases

Apparently we’re a little uncomfortable with the idea of playing around at work, even to
learn how to use a new code. There isn’t a lot more to say about those specific results, but

-3-

L. Busby STEERING LANGUAGES, 8/2014

defining a reasonable set of use cases is certainly part of a successful steering language
project. One additional table (3) shows how the responders self-identified as a ‘‘designer’’
or as a ‘‘developer’’.

I am more of a ... AX B

Designer : Developer 10:10 4:2

Table 3 - Self-identification by Division

Finally, in B-division, the breakdown by years in field (<10:10-20:>20) was 1:3:2; AX
was 6:4:9.

4. Recommendation: Build a Pilot Code Using Lua
The primary purpose of this section is to draw out the differences between Python and
Lua, in order to justify the recommendation. That said, the languages have quite a bit in
common. Their syntax is generally procedural. Assignments, function definitions and
function invocations are easy to recognize in either language. Python uses indentation to
indicate block structure. Lua is more traditional in its use of keywords to indicate block
structure. White space in Lua is freeform. Lua is simple, but it has some sophisticated
features such as first-class functions, closures, coroutines, iterators, and more. (None of
which a casual user needs to understand.) Syntactically, it seems fair to say that neither
language requires much effort to learn and use. Unlike Python, Lua has no pre-defined
class statement, but it does have mechanisms that allow object-oriented interfaces to be
constructed, if desired. At the level of linking to C code, the Lua API contained about 113
functions in 2007, whereas the Python API had about 656 public functions. [MUH1]
(Neither has changed greatly in the last seven years.) A short example below illustrates
basic syntax. More example code is available in the Scimark benchmarks run as part of
this study. [LEB1]

Python: Lua:
def factorial(n): function factorial(n)

if n == 0: if n == 0 then

return 1 return 1

else: else

return n*factorial(n-1) return n*factorial(n-1)

end

end

There are at least two major implementations of the Lua library and language. The first is
‘‘Standard Lua’’, the original version from Brazil. The second is Luajit, [LUJ1] which is
a just-in-time compiler for Lua. To a first approximation, the two versions are compatible,
and compatible at the application binary interface (ABI) level: A code can link to either
library without recompiling or any special effort. Luajit is probably responsible for much
of the recent surge in interest among scientific users of Lua. Besides being much faster in
general, Luajit has an excellent foreign function interface that can simplify much of the

-4-

L. Busby STEERING LANGUAGES, 8/2014

effort in linking to C libraries. For us at LLNL, however, it’s important to note that Luajit
is not presently available for the PPC64 architecture (Sequoia). Standard Lua is famous
for its portability, and is available for all our platforms.

4.1. Comparison of Source Code Size

Earlier, the comment was made that Lua is smaller than Python. That is true in several
senses. Let’s begin with the overall size of the source code for the respective packages.
The following table gives some basic metrics about Lua, Python, and several related or
otherwise interesting codes. LLVM is included because it is required for Terra, Numba,
and Julia, which will be discussed later. The numbers reported in the table are in thou-
sands of lines of code (KLOC), and were collected using the Perl script cloc. [CLO1]
Blank lines and comments are not counted.

Code-Version C/C++ Python Lua Other Total Dependencies

Lua-5.1.5 12.7 - 0.4 - 13.1 C
Luajit-2.0.3 59.6 - 8.9 - 68.5 C
LLVM-3.3 1465 11.6 - 369 1846 C, C++
Terra-6768359 8.5 - 4.3 - 12.8 LLVM, Luajit
Python-2.7.2 426.8 405.2 - 45.0 877 C

Numpy-1.6 107.7 75.9 - - 183.6 C, Python
Scipy-0.9 438.5 76.8 - - 515.3 C, C++, Fortran, ...
Cython-0.20.2 8.9 83.4 - - 92.3 C, Python
Pypy-2.3.1 48.4 1002 - 5.2 1056 C, Python, ...
Numba-0.13.3 8.7 66.2 - - 74.9 LLVM, Numpy, ...

Table 4 - Code Sizes for Some Language Implementations

We need to be careful in touting how small something is, of course. Small size is false
economy if you give up required functionality. Python + Numpy + Scipy is an indispens-
able tool for many scientists. Together, they sum to more than 1½ million lines of code. Is
that required for basic code steering? In my opinion, Standard Lua (13 KLOC) or Luajit
(69 KLOC) are capable of handling the basic steering task, and enough smaller as to
make a qualitative difference in planning for their support and maintenance within a
development team.

4.2. Speed and Memory Benchmarks

We can argue about functionality, but lines of code is fairly objective and easy to mea-
sure. Demonstrating differences in memory size and execution speed takes more work. To
that end, I ran two separate sets of benchmarks that included the languages of interest.

Expression Parsers
Expression parsers are a little byway in programming that I learned a bit more about in
doing this study. Here at LLNL, the Blast code uses an expression parser named Fparser,
which allows users to define at runtime what are effectively one-line functions of 2-4 real
variables. We duplicated the functionality using Lua recently, and were curious about the

-5-

L. Busby STEERING LANGUAGES, 8/2014

relative performance. It’s an area of steering language use that I had not had much
experience with before, so I carried out a set of benchmark runs, the mean results of
which are summarized in the short table here. Arash Partow [PAR1] has done a much
more extensive set of benchmarks for expression parsers, but did not include Lua or
Python in his tests. Note that expression parsing in the sense of these tests is inherently
scalar. In particular, it would be possible to run the tests using Python + Numpy, but that
would run slower (I checked) than standard Python, because the tests do not use vectors.

Language → C++(sec) Fparser Lua Luajit Python

Total seconds | Mean Ratio → 15.5336 1.51 4.39 1.70 10.26

Table 5 - Summary Expression Parser Benchmark Results

Full results of my runs are given in Appendix A.The complete code to reproduce these
benchmarks and the following Scimark results is at [LEB1] . As seen in the table, pure
C++ averages about 1½ times faster than Fparser over 26 various expressions, and is
about 10 times faster than Python over the same set. These results are much better for all
three scripting languages than most general benchmarks demonstrate. I believe that is due
to the fact that expressions, or at least these 26, tend to concentrate most of their effort in
standard math library routines. All five of the languages link to the same math library, and
computing sin(a) + cos(b) will spend most of its time in the library, regardless of which
language is being used.

Scimark Benchmarks
The Scimark [SCI1] benchmarks in their original form include Java and C implementa-
tions of five common numeric algorithms. M. Pall [PAL1] wrote a lua/luajit version of the
tests. H. Ardo [ARD1] wrote a Python/Pypy version of Scimark, as part of a larger set of
benchmark tests for the Pypy [PYP1] project. I used Pall’s code without any essential
changes for the Lua, Luajit, and Terra results given here. I modified his code slightly for
the results labeled ‘‘lj-uopt’ ’: Luajit has the ability to create ‘‘unboxed’’ arrays of native C
types, and it has bit operators distinct from standard Lua. The lj-uopt results turn OFF
those optimizations.
I modified Ardo’s code as needed to make a standalone version of Scimark for Python.
That code is used by both standard Python and Pypy. The Numpy, Cython, and Numba
versions each required their own separate set of modifications. The reader may note that I
am not a Python expert, nor Lua, nor any other of the scripting languages represented
here, for that matter. The code that I wrote is intended to be representative of ‘‘a good
first attempt’’ in each language. Many possible optimizations could no doubt be made. (I
would be happy to receive corrections and improvements.) Furthermore, some of the code
‘‘cheats’’: For example, the Numpy version uses its builtin random number generator
instead of the version from Ardo, because any reasonable Numpy programmer would do
that. And a real Cython programmer would probably use Numpy to do more of the work
in that version, but I chose to keep most of the loops in Cython, to better understand what
that implementation by itself can do.
The Scimark benchmarks run five separate tests, in order: A fast fourier transform (FFT),
Successive over-relaxation (SOR), a Monte Carlo calculation of the value of π (MC), a

-6-

L. Busby STEERING LANGUAGES, 8/2014

Raw Scimark results in MFLOPS are shown for cc-O2. Values for other
languages are in ratio to the cc-O2 values: A smaller number is faster.

LANG FFT SOR MC SMV LU MEAN PKMEM(MB)

cc-O2 714.9 802.9 201.8 1032.1 1422.2 834.8 0.27
luajit 1.78 0.87 0.81 2.59 1.17 1.31 0.85
lj-uopt 1.82 0.90 2.20 3.72 1.56 1.63 1.0
lua 61.9 26.2 24.1 55.7 54.3 43.8 1.1
terra 1.55 0.88 0.80 2.52 1.18 1.29 7.2

python 276. 1041. 200. 232. 1883. 436. 3.9
numpy 3.23 2.33 230. 2.31 1.00 1.71 29.1
cython 12.3 1.41 6.23 3.23 7.19 3.55 269.4
pypy 5.44 1.45 4.04 8.25 7.07 3.93 32.6
numba 1.99 1.03 38.1 2.02 869. 2.53 110.0

Table 6 - Scimark Results: Ratios to cc-O2 Values, plus Peak Memory(MB)

M
em

or
y,

M
B

0.1

1

10

100

1000

FFT SOR MC SMV LU

cc-O2

lua,luajit

python
terra

numpy
pypy

numba

cython

Fig. 1: Memory usage during five Scimark tests

sparse matrix-vector multiplication (SMV), and an LU decomposition of a matrix (LU).
The original benchmarks run ‘‘small’’ and ‘‘large’’ tests, in the sense of memory; I ran
only the ‘‘small’’ versions. Specifically, each problem is set up at the given size, then
timed for running N = 1 cycle. If the cpu time required to do that exceeded 2.0 seconds,
the test is finished. Otherwise, N is doubled and the test runs again, until cpu time is
greater than 2 seconds. A simple formula is then applied to compute the number of float-
ing point operations required to do the task, divided by the cpu time, to output a
MFLOPS rating for that test. In the table, raw results (‘‘MFLOPS’’) are shown for the
‘‘cc-O2’’ row. (cc-O2 is the C version of Scimark, compiled at the -O2 level.) Results for
the other languages are given as a ratio to those values. So for any language except cc-

-7-

L. Busby STEERING LANGUAGES, 8/2014

O2, a smaller score is better. For example, Lua was 61.9 times slower than cc-O2 running
the FFT test, and Lua’s raw Scimark score for that test was 714. 9÷61. 9 = 11. 55. Scores
reported in the MEAN column are the ratio of the mean Scimark scores, not the mean of
the ratios.

Each language required about 30 seconds to run the full set of five tests. While the test
was running, I separately measured the memory size of the test process, at one second
intervals, using the smem [MAC1] program. Peak memory usage, in megabytes, is
reported in the ‘‘PKMEM’ ’ column of the table. Those memory results seemed interest-
ing enough to plot as a full time series, seen in Figure 1. The x-axis measures time, with
marks showing roughly which of the five tests was running at a given moment. (It’s diffi-
cult to be precise, because the clock time varies slightly among the 10 languages.) Note
that the y-axis is logarithmic.

The Scimark and memory usage results presented here are broadly consistent with other
benchmark tests that I have seen, so I was not especially surprised by them. They are, I
believe, consistent with the earlier assertion that Lua and Luajit are ‘‘noticeably faster and
smaller’’. Standard Lua was about 10× (436÷43.8) faster and 3.5× (3.9÷1.1) smaller than
standard Python. That said, these benchmarks, like all others, mostly demonstrate how
difficult it is to produce definitive results. I spent almost two working weeks assembling
all the executables onto one machine, writing code, debugging, and optimizing in an
effort to produce results that are, in the words of a famous news network, fair and bal-
anced. Two weeks was barely enough. Some other interesting Python implementations
include Parakeet, Pyston, Theano, and Pythran. Time considerations limited me to the
five shown here. A few more comments about the specific results and my experience:

• Numpy gave the best overall performance among the five Python implementations
tested, by a fairly substantial margin. I was disappointed with its results on the Monte
Carlo test; surely that can be improved. Also, in the SOR test, the natural way to
process the matrix using Numpy is to use an array expression to compute each element
as the average of its four neighbors. Array expressions create temporary copies, so
would appear to require a non-progressive algorithm. In short, the Numpy version of
the SOR test is actually using Jacobi iteration, which requires ω < 1 for convergence.
Jacobi is technically slower than SOR, but in this case the array expression is still at
least 100 times faster than the unvectorized loops - any self-respecting Numpy pro-
grammer would do it that way, I think.

• Cython is a hybrid language, mostly Python, with type declarations that look familiar to
a C programmer. Cython gave very respectable results here, although its memory usage
was quite high towards the end. Cython seems to balance the several needs of a scien-
tific programmer rather well. It allows optimization to be done a little at a time, it’s
friendly to Numpy, it’s easy to link to other libraries, the syntax seems clear to a C pro-
grammer, and it felt stable. On this particular benchmark, Cython could easily have had
the best score among the five Python implementations tested: It could have run the
Numpy code in every case except Monte Carlo, where the unvectorized Cython code
was 37× faster than (vectorized) Numpy.

• Pypy is a just-in-time implementation of Python. Pypy is the only other code capable of

-8-

L. Busby STEERING LANGUAGES, 8/2014

running exactly the same script as standard Python (just 111× faster.) It therefore didn’t
require any fiddling on my part. Unfortunately, Pypy and Numpy/Scipy seem not to get
along very well.

• Numba turned in the second best overall speed results among the Python implementa-
tions. However, it seemed ... touchy. And the results for the LU test are just mysterious
to me. The code for Numba looks nearly the same as the Pypy version, except for the
‘‘@jit’ ’ decorator. Yet Pypy ran that test more than 122 times faster than Numba. I tried
several variations of the LU code for Numba over several days, and found nothing that
would improve the reported results. Surely this is a case of user ignorance or error.

Crosscheck
Two LLNL codes - Lasnex and Ares - that optionally load Python as a library were
available to me.2 This made it possible to measure memory size of the running exe-
cutable before and after loading Python. Lasnex loads Python dynamically. Immediately
after starting, Lasnex had a memory footprint of about 38.6MB. Starting Python (includ-
ing Numpy) changed that to 49.3, an increase of about 10.7MB. Ares loads Python stati-
cally. The non-Python version was about 28.4MB. Linking Python gave a starting size of
35.6; initializing and importing Numpy and Scipy increased memory to 50.7MB. So in
very rough terms, adding Python and Numpy to a code appears to add anywhere from 10
to 22MB or so to the size of the memory image. Measurement of a standalone copy of
Python showed an initial size of 3.2MB; importing Numpy increased the size to 11.7MB.
These are similar numbers to the values seen during the Scimark tests.

5. Recommendation: Use Python More, not Less
Enthusiasm for Python as a steering language has perhaps only been exceeded by enthu-
siasm for it as a scripting language. That is, many people [LUC1] would be happy to use
only Python, and at least figuratively, leave the system language to library authors. Much
of the more recent work in the Python development community reflects that sentiment:
Pyrex, Cython, IPython, Pypy, Numba, Pyston, Parakeet, and many others are efforts to
make Python the scripting language into a faster and therefore more comprehensive tool.

My own informal survey of recent scientific Python projects suggests to me that the cen-
ter of gravity has indeed shifted. The standard tools once were SWIG and Numpy, fol-
lowed shortly by Scipy. It seems more common now to write scientific programs using
Cython. In addition to excellent support for Numpy and Scipy, Cython’s foreign function
interface can obviate much of the effort of wrapping existing system language code. It is
highly compatible with standard Python, and my own tests showed that simply compiling
an otherwise unchanged Python module with Cython resulted in a dynamically loadable
module about 2× faster than standard Python. From there, optimization can proceed a lit-
tle at a time. The modules produced by Cython are not small, and the running code may
take substantial memory, as was demonstrated earlier in the Scimark runs, but that is
really not an issue most of the time.

As a ‘‘desktop interface’’, IPython has good support for Cython, along with Pypy,

2These measurements were made on an X86_64 (64 bit) system.

-9-

L. Busby STEERING LANGUAGES, 8/2014

Numba, and many other of the various analytic and plotting packages for Python. The
one difficulty that I experienced during the preparation of my study was in assembling a
complete, self-consistent Python environment that included all the pieces for doing the
work. My own job assignment over most of the past 15-20 years has not required much
Python work. I developed a couple of fairly extensive Python modules in 1996-97, but
would otherwise describe myself as an occasional user. It has never been trivial to assem-
ble all the parts of a substantial Python environment, and the current plethora of tools
makes that harder, not easier.

My work benefited greatly from the availability of the ‘‘Anaconda’’ Python distribution
[CON1] from Continuum Analytics. I was fortunate that my primary machine for running
the benchmarks is supported by an existing binary distribution of Anaconda. Given the
increased interest in Python as a scientific end-user language, and given the difficulty in
building a complete environment, I specifically recommend that we consider purchasing
support for a distribution such as Anaconda for a period of time. There are other similar
Python distributions available, and I defer to others more knowledgeable in selecting a
particular one.

It is also important to distinguish here between Python as a scripting language and Python
as a steering language. As a scripting language, our entire community of Python pro-
grammers and users would benefit from a relatively standard, complete, and up-to-date
environment. As a steering language, the several developer groups responsible for code
projects have several sets of requirements and constraints. They may well choose to cus-
tomize Python as necessary for their particular code, and should continue to be able to do
so.

6. Recommendation: Consider Some Ideas from The Basis System
The Basis System [DUB2] started as part of the MERTH project in the spring of 1984, in
the Magnetic Fusion Energy (MFE) program. The first usable code began to appear in the
winter of 1984-85. Basis spread through MFE for the next 3-4 years, then was chosen as
the computer science infrastructure for the Unix port of the Lasnex [ZIM1] code. The
Lasnex/Unix project required another 3-4 years to mostly complete, followed by 6-8
years of continuing refinement of Basis, which continues at a low level up to the present
time.

Basis itself was initially written in the Basis dialect of Fortran, called MPPL. MPPL is a
close cousin of the Unix m4 macro processor, with slightly more conventional syntax and
some features specific to Fortran (77), such as line length and column conventions. Over
the years, most of Basis has been converted to C. Only one package remains in MPPL
today, for testing purposes. Lee Taylor has, within the last 5 years or so, added very good
support for modern Fortran in Basis.

Basis was an ambitious project, [DUB3] with a lot of components that each pushed the
boundaries of language and user interface design and integration. It is still unique in the
sense that all its components were designed to work together as part of a steering lan-
guage system.

-10-

L. Busby STEERING LANGUAGES, 8/2014

6.1. The Basis Run Time Database

Basis defines and creates a run-time database as one component. Consider one element of
the Basis RDB: It has a complete C-compatible API for use from compiled code (the host
program.) Most operations on the RDB that can be done through the Basis interpreter can
also be done by the host program using that API.3 A more modern name for this capabil-
ity is introspection - the host program can inspect its own variables and functions without
going to the scripting language. Thus operations such as dump/restart, mesh modifica-
tions, and so forth can be accomplished entirely from compiled code, using standard calls
to interact with the RDB. This is simple and efficient. Making it depend on the scripting
language would be worse, not better.

6.2. The Basis Data Description Language

The run-time database can obviously be modified dynamically. However, much of it is
actually constructed and initialized at compile-time, using a data description language
(DDL) that Basis called a ‘‘variable descriptor file’’ (VDF). Programs are broken into
packages, each of which is described by one or more VDF’s. The information in a VDF is
similar to ‘‘header’’ files: Variable types, shapes, sizes, function signatures, ‘‘groups’’ that
collect together those things, macro definitions, parameters, documentation, comments,
etc.4 It is prosaic and from today’s perspective, even a little passé.5 Aspects of the VDF
that need to be remembered are about as follows: Static initialization of the RDB is quite
important. The Lasnex RDB has perhaps 1200 entries, but any given problem input file
touches only a tiny fraction of those variables. The default values for the rest were set in a
VDF. Default values themselves change as time goes by. Lasnex also has a system to
track default values through time, so that if an old problem is restarted, variables receive
the default value that was in effect at the date the problem ran, instead of the date of the
code that is running it.

The VDF was designed to balance the needs of a human reader/developer against the
needs of a computer parsing the file. In general, the VDF favors the human. Most of the
information about a given object is gathered together in one spot, and is organized to give
the human maximum clarity with minimum effort. Header files, plus optional directives
that guide a program such as SWIG in generating ‘‘glue’’ code accomplish the same gen-
eral ends as does a VDF. But the VDF was designed to do its job, and the developers for
whom it was specifically designed, do notice. This principle can be carried into a future
data description language.

6.3. The Basis User Interface Construction System

One last component in Basis seems even more of an anachronism: The Basis scripting
language contains its own macro processor. This can be used to define a domain specific
language (DSL) as the user interface for a given project. Even as macro processors go,
(Dubois was famous for his ‘‘I hate macros’’ comments) the Basis version is painfully
complicated to work with. Nevertheless, many users consider it a gift.6 I don’t personally

3This feature - a C API that gives the host program full access to the Lua state - is cited by the
Lua authors as one of the key reasons for that language’s success, and is an enduring design goal

-11-

L. Busby STEERING LANGUAGES, 8/2014

recommend a macro processor. But as an element of user interface design, the Basis
experience is worth remembering. People do appreciate a user interface that is concise
and designed for the task at hand. Although a steering language does sometimes require
power and generality, the interface designed on top of it also needs to be as simple as pos-
sible. Several users and developers commented to the effect that a ‘‘program input deck
should not be an API.’’

One other advantage that Basis had, not easily carried forward, is that its scripting lan-
guage is essentially equivalent to its systems language (Fortran.)7 This was certainly part
of the design: Early Basis documents suggest that algorithm development could be done
using the scripting language, then easily transferred to MPPL/Fortran with little change.
It is difficult to even properly appreciate this feature now. Language design has moved on,
and we imagine that it’s a good thing for the scripting language to be independent from
the system language.8 Still, when you consider the effort that has gone into, say, Pyrex
and Cython, to achieve what is basically a blending of the scripting and system layers, it
is useful to remember that easier solutions to a similar problem have been found in the
past.

6.4. Basis Summary

This has been a long section. To reiterate the main points, here is a summary of some of
Basis’ good ideas:
• An run-time database (RDB) with a complete ISO C API for the host program(s);
• A language and process for initializing and constructing the RDB, designed for

humans; (and, seriously, consider the question of units.)
• A user interface that goes well beyond ‘‘wrapping’’ the internal objects of the compiled

code.

7. Conclusion
I considered subtitling this paper Possibly the Least Surprising Paper of 2014, then

for their team.
4One other item that the VDF formally defines, but never used in practice, is units. It is a regret
often expressed and deeply felt by Basis users and developers alike that units were optional in the
VDF. It would not be trivial to require units in a future database, but it is certainly worth consider-
ing.
5In 1984, Fortran didn’t have header files; it was necessary to invent the VDF from the ground up.
6Interestingly, it seems that Lua has considered a macro processor as late as 2007. In [IER1] , §7,
the comment is made that ‘‘We still have not completely dismissed the idea of providing Lua with a
macro system: it would give Lua extensible syntax to go with extensible semantics.’’ (But don’t
hold your breath....)
7This included strong typing. The Basis scripting language requires that variables be declared
before use, although it provides a ‘‘chameleon’’ type that can vary. There is a ‘‘modern’’ trend
towards stronger typing in dynamic languages. It’s good to know that the Wheel of Reincarnation
is yet revolving.
8I know of some scripting languages that emulate the syntax of C or C++, but none has become
generally popular. Leaving aside the technical issues, neither of those languages is likely to win a
beauty contest.

-12-

L. Busby STEERING LANGUAGES, 8/2014

decided that (as usual) I was not really taking account of the long term. I have learned
some new, if mostly unsurprising to me, things. (And I do acknowledge that gathering
together unsurprising facts can sometimes be useful, and that not everyone has had my
experiences.)

Expression parsers are an interesting small piece of the steering problem, new to me. My
attitude towards the general process of wrapping code, especially in the embedded case,
changed noticeably as a result of reading, thinking, talking to other people, and trying out
a few simple things.

More than that, I have come to appreciate some aspects of what I once treated as received
knowledge in a slightly different light. In [DUB4] we wrote that ... the most changeable
aspect of a scientific computer program is what users want to calculate with it. That cer-
tainly does sound true. Later on (1998), in [DUB5] Dubois wrote that in his observation,
most average scientists and engineers in fact ‘‘program computers for money’’ part of the
time, and are therefore to that extent professional programmers. That also may be true,
and more so as time passes. Yet I find myself not sure that I entirely agree. More impor-
tantly, I’m not sure that you the users of scientific programs agree.

The realistic choices that we have with regard to steering languages today make it all too
easy for the wrapping step to also become the user interface. That seems more like ‘‘if it’ s
good for the programmer it’s good for the user’’, which is a step beyond ‘‘setting the sci-
entist free’’, and may well not be true. Whatever else their benefits, steerable codes
require a collaboration between programmers and users. Like any collaboration, success
requires that each side needs to come a little more than half way to the center. Otherwise
the gap in the middle is all too clear.

7.1. Acknowledgements

One last conclusion is that this paper was rather too large a project for one person. Con-
fronting the sheer energy and scope of scripting languages, wrapping technologies, and
various programming environments, is plenty enough to make one feel constantly lazy
and ignorant. I could not have done nearly so well without important help from many
nearby people. I am grateful to Rob Neely for suggesting the project. To all of you who
returned comments on my questionnaire, thank you. I am grateful for extended conversa-
tions with Lee Taylor, Brian Ryujin, Kyle Chand, Aaron Black, Dean Williams, Walt Nis-
sen, Tom Brunner, Rob Rieben, and several members of the PMESH and Lasnex teams.
Mike Collette and Brian Ryujin personally gathered statistics about the Ares code for my
benefit. Kyle Chand, Walt Nissen, and Aaron Black did the same for their codes. Dan
Laney, Jeff Keasler, and Tanim Islam sent me extended email commentary about steering
languages and their current uses. To each of those individuals, thank you. Finally, I am
indebted to the several members of the Basis and Lasnex code development teams, and to
the many users of those systems, who have taught me most of what I know about steering
languages. If mistakes remain in the paper, they are my responsibility, of course.

-13-

L. Busby STEERING LANGUAGES, 8/2014

8. References and Additional Reading
1. [ABA1] The GSL Shell Project: A Luajit wrapper around the Gnu Scientific Library.

Seehttp://www.nongnu.org/gsl-shell/
2. [ARD1] Scimark benchmark for Pypy: See https://bitbucket.org/pypy/benchmarks/

commits/04c696b62ec7/
3. [BEC1] Bechtold, Bastian., Lunatic-python, A two-way bridge between Python and

Lua. See https://github.com/bastibe/lunatic-python
4. [BEZ1] Bezanson, J., Karpinski, S, Shah, V., and Edelman, A., Julia: A Fast Dynamic

Language for Technical Computing, arXiv:1209.5145 [cs.PL], 2012, See
http://arxiv.org/abs/1209.5145

5. [BOO1] Boost.python interface generator: See http://www.boost.org/doc/
libs/1_55_0/libs/python/doc/

6. [CLO1] Cloc, a Perl script to count lines of code: Seehttp://cloc.sourceforge.net/
7. [CON1] Continuum Analytics, source of Anaconda distribution of Python tools: See

http://continuum.io/
8. [CYT1] Behnel, S., et al., Cython: The Best of Both Worlds, Computing in Science

Engineering, 2011, v13n2, pages 31-39. See http://cython.org
9. [DEV1] Terra: A low-level counterpart to Lua. See http://terralang.org/
10.[DUB1] P.F. Dubois, A New Architecture for Large Scientific Simulations, 1984,

https://e-reports-int.llnl.gov/pdf/197756.pdf
11.[DUB2] P.F. Dubois, et al., The Basis System, M-225, Lawrence Livermore Labora-

tory, Livermore, CA, 1988 (227pp.) Notes about the origin of Basis were taken from
the preface of this document. Arguably the ‘‘best’’ Basis manual, it has apparently
been lost from, or never entered into, the Lab library. I still keep a paper copy.

12.[DUB3] Dubois, P.F. and Motteler, Z.C., Basis: Setting the Scientist Free, 1988,
https://e-reports-int.llnl.gov/pdf/215997.pdfThis is a good short summary of the
overall Basis system.

13.[DUB4] Dubois, P.F. and Motteler, Z.C., The Basis Code Development System
(1995), Lawrence Livermore National Laboratory. See https://e-reports-int.llnl.gov/
pdf/226458.pdf

14.[DUB5] Dubois, Paul F., Ten Good Practices in Scientific Programming, UCRL-
JC-132268, See https://e-reports-int.llnl.gov/pdf/234862.pdf

15.[FBL1] fblualib: A collection of Lua/Torch utilities. See https://github.com/facebook/
fblualib

16.[HOA1] A pair of essays on interactive scientific computing. See http://gray-
don2.dreamwidth.org/3186.html

17.[IER1] Ierusalimschy, R., de Figueiredo, L. H., Celes, W. 2007. The evolution of Lua.
In the Third ACM SIGPLAN Conference on History of Programming Languages:
2.1-2.26, San Diego, CA (June). See http://www.lua.org/doc/hopl.pdf

18.[IER2] Ierusalimschy, R., de Figueiredo, L. H., Celes, W. Passing a language through
the eye of a needle, ACM Queue 9 #5 (May 2011) 20-29. See http://queue.acm.org/
detail.cfm?id=1983083

19.[KOL1] Blast team members include Tzanio Kolev, Robert Rieben, Veselin Dobrev,
Robert Anderson, Michael Kumbera, Thomas Brunner. See https://computation-
rnd.llnl.gov/blast/

-14-

http://www.nongnu.org/gsl-shell/
https://bitbucket.org/pypy/benchmarks/commits/04c696b62ec7/
https://bitbucket.org/pypy/benchmarks/commits/04c696b62ec7/
https://github.com/bastibe/lunatic-python
http://arxiv.org/abs/1209.5145
http://www.boost.org/doc/libs/1_55_0/libs/python/doc/
http://www.boost.org/doc/libs/1_55_0/libs/python/doc/
http://cloc.sourceforge.net/
http://continuum.io/
http://cython.org
http://terralang.org/
https://e-reports-int.llnl.gov/pdf/197756.pdf
https://e-reports-int.llnl.gov/pdf/215997.pdf
https://e-reports-int.llnl.gov/pdf/226458.pdf
https://e-reports-int.llnl.gov/pdf/226458.pdf
https://e-reports-int.llnl.gov/pdf/234862.pdf
https://github.com/facebook/fblualib
https://github.com/facebook/fblualib
http://graydon2.dreamwidth.org/3186.html
http://graydon2.dreamwidth.org/3186.html
http://www.lua.org/doc/hopl.pdf
http://queue.acm.org/detail.cfm?id=1983083
http://queue.acm.org/detail.cfm?id=1983083
https://computation-rnd.llnl.gov/blast/
https://computation-rnd.llnl.gov/blast/

L. Busby STEERING LANGUAGES, 8/2014

20.[LEB1] Benchmark code for expression parsing and Scimark tests in this paper:
Contact the author, or see https://bitbucket.org/lebusby/splb

21.[LUA1] General starting point for all things Lua: Seehttp://lua.org
22.[LUC1] Lucks, Julius B., Python - All a Scientist Needs, eprint arXiv:0803.1838,

2008. See http://arxiv.org/abs/0803.1838
23.[LUJ1] Luajit project home page: Seehttp://luajit.org/
24.[LUP1] Lupa: Python wrapper around Luajit. Seehttps://pypi.python.org/pypi/lupa
25.[MAC1] Smem memory measurement (python) script: See http://www.selenic.com/

smem/Smem attempts to proportion memory use among the several processes sharing
memory pages in a multi-processing operating system All values reported in the paper
were taken from the ‘‘PSS’’ output of smem.

26.[MER1] A collection of links to projects that use Lua. Seehttps://sites.google.com/
site/marbux/home/where-lua-is-usedand see also http://en.wikipedia.org/wiki/
Lua_%28programming_language%29About 100 packages in the Debian repository
depend on liblua.

27.[MOL1] MATLAB origins story: See http://www.mathworks.com/company/newslet-
ters/articles/the-origins-of-matlab.html

28.[MUH1] Muhammad, H. and Ierusalimschy, R., C APIs in Extension and Extensible
Languages, Journal of Universal Computer Science, v13n6 (2007), pps 839-853. See
http://www.jucs.org/jucs_13_6/c_apis_in_extension

29.[OUS1] Ousterhout, J.K. (1990). Tcl: An embeddable command language. In Pro-
ceedings of the USENIX Winter 1990 Technical Conference, pages 133-146, Berke-
ley, CA. USENIX Association. See http://web.stanford.edu/˜ouster/cgi-bin/papers/tcl-
usenix.pdf.

30.[OUS2] Ousterhout, J.K. (1998). Scripting: Higher-level programming for the 21st
century. IEEE Computer, 31(3):23-30. See http://www.tcl.tk/doc/scripting.html

31.[PAL1] Scimark.lua code for tests as run in this paper: Seehttp://luajit.org/download/
scimark.lua

32.[PAR1] Extensive tests of several C++ expression parser codes: See
http://code.google.com/p/math-parser-benchmark-project/

33.[PYB1] Pybindgen software interface generator: See http://code.google.com/p/
pybindgen/

34.[PYP1] Home page for Pypy implementation: See http://pypy.org/
35.[SAT1] Satish, N., et al., Can traditional programming bridge the Ninja performance

gap for parallel computing applications?, Proceedings of the 39th Annual International
Symposium on Computer Architecture, pages 440-415, IEEE Computer Society
Washington, DC, USA (2012). See http://dl.acm.org/citation.cfm?id=2337210

36.[SCI1] Scimark benchmark home page: Seehttp://math.nist.gov/scimark2/
37.[SEL1] Lua interface generator for C++ code: See https://github.com/jeremyong/

Selene
38.[SWE1] T. Sweeney comments about scripting language problems: See

https://news.ycombinator.com/item?id=7585186and see also http://tinyurl.com/
qcosbz5for the original posting.

39.[SWI1] SWIG home page: Simplified Wrapper and Interface Generator. See
http://www.swig.org/

-15-

https://bitbucket.org/lebusby/splb
http://lua.org
http://arxiv.org/abs/0803.1838
http://luajit.org/
https://pypi.python.org/pypi/lupa
http://www.selenic.com/smem/
http://www.selenic.com/smem/
https://sites.google.com/site/marbux/home/where-lua-is-used
https://sites.google.com/site/marbux/home/where-lua-is-used
http://en.wikipedia.org/wiki/Lua_%28programming_language%29
http://en.wikipedia.org/wiki/Lua_%28programming_language%29
http://www.mathworks.com/company/newsletters/articles/the-origins-of-matlab.html
http://www.mathworks.com/company/newsletters/articles/the-origins-of-matlab.html
http://www.jucs.org/jucs_13_6/c_apis_in_extension
http://web.stanford.edu/~ouster/cgi-bin/papers/tcl-usenix.pdf.
http://web.stanford.edu/~ouster/cgi-bin/papers/tcl-usenix.pdf.
http://www.tcl.tk/doc/scripting.html
http://luajit.org/download/scimark.lua
http://luajit.org/download/scimark.lua
http://code.google.com/p/math-parser-benchmark-project/
http://code.google.com/p/pybindgen/
http://code.google.com/p/pybindgen/
http://pypy.org/
http://dl.acm.org/citation.cfm?id=2337210
http://math.nist.gov/scimark2/
https://github.com/jeremyong/Selene
https://github.com/jeremyong/Selene
https://news.ycombinator.com/item?id=7585186
http://tinyurl.com/qcosbz5
http://tinyurl.com/qcosbz5
http://www.swig.org/

L. Busby STEERING LANGUAGES, 8/2014

40.[TOL1] Tolua++ software interface generator for C++: See
http://www.codenix.com/˜tolua/

41.[TOR1] Machine learning toolkit featuring Luajit. Collobert, R., et al., Torch7: A
Matlab-like Environment for Machine Learning, BigLearn, NIPS Workshop, 2011.
Seehttp://torch.ch/and http://ronan.collobert.com/pub/matos/2011_torch7_nipsw.pdf

42.[ZIM1] Zimmerman, G.B. et al., LASNEX-A 2-D Physics Code for Modeling ICF,
Inertial Confinement Fusion, 1996 ICF Annual Report, LLNL, UCRL-LR-105821-96,
Seehttps://lasers.llnl.gov/publications/icf_reports/annual_96.pdf

-16-

http://www.codenix.com/~tolua/
http://torch.ch/
http://ronan.collobert.com/pub/matos/2011_torch7_nipsw.pdf
https://lasers.llnl.gov/publications/icf_reports/annual_96.pdf

L. Busby STEERING LANGUAGES, 8/2014

9. Appendix A: Expression Parser Benchmarks

N C++ Fparser Lua Luajit Python Expression, as x = f(a,b)

0 0.0367 3.14 76.6 14.8 189. sin((1.0+2.0/2.0*3.0)*4.0ˆ5)+cos(6.0*π)

1 0.0379 3.89 23.0 14.1 58.0 a+1.0

2 0.0360 4.09 24.2 14.7 59.3 a*2.0

3 0.0385 4.98 24.2 13.9 67.8 2.0*a+1.0

4 0.0382 6.21 25.9 14.1 75.4 (2.0*a+1.0)*3.0

5 0.0421 7.82 64.4 13.4 140. 1.1*aˆ2 + 2.2*bˆ3

6 2.3541 1.28 1.55 1.00 2.681.1*aˆ2.01 + 2.2*bˆ3.01

7 1.2282 0.83 2.82 1.07 7.191.0/(a*sqrt(2.0*π))*eˆ(-0.5*((b-a)/a)ˆ2)

8 0.0928 7.65 21.1 7.85 72.3 (((((((7.0*a+6.0)*a+5.0)*a+4.0)

*a+3.0)*a+2.0)*a+1.0)*a+0.1)

9 0.0837 14.0 102. 8.28 218. 7.0*aˆ7 + 6.0*aˆ6 + 5.0*aˆ5 +

4.0*aˆ4 + 3.0*aˆ3 + 2.0*aˆ2 +

1.0*aˆ1 + 0.1

10 0.0774 4.12 24.7 10.3 57.9 sqrt(aˆ2+bˆ2)

11 0.4761 1.19 3.38 2.01 5.89sin(a)

12 0.0728 2.32 21.5 9.42 43.2 sqrt(abs(a))

13 0.0379 3.30 31.2 15.2 62.1 abs(a)

14 0.1681 5.55 18.9 5.33 75.5 (a/((((b+(((e*(((((π*((((3.45*

((π+a)+π))+b)+b)*a))+0.68)+

e)+a)/a))+a)+b))+b)*a)-π))

15 2.1368 1.28 2.52 1.05 6.01a + (cos(b-sin(2/a*π)) - sin(a-cos(2*b/π))) -

b

16 0.9613 1.17 2.81 1.26 4.62sin(a) + sin(b)

17 0.5437 1.59 6.06 2.58 13.3 abs(sin(sqrt(aˆ2+bˆ2))*255.0)

18 0.1649 2.25 7.63 3.97 25.4 (b+a/b) * (a-b/a)

19 1.1536 1.50 3.02 1.15 7.71(0.1*a+1.0)*a+1.1-sin(a)-log(a)/a*3.0/4.0

20 1.2522 1.24 2.40 1.10 4.83sin(2.0 * a) + cos(π / b)

21 1.2731 1.28 2.44 1.08 5.191.0 - sin(2.0 * a) + cos(π / b)

22 1.3956 1.33 2.94 1.33 6.46sqrt(abs(1.0 - sin(2.0 * a) + cos(π / b) / 3.0))

23 0.0806 3.20 12.5 7.38 39.0 1.0-(a/b*0.5)

24 1.6753 1.13 1.76 0.90 3.2910.0ˆlog(3.0+b)

25 0.0760 2.25 22.4 7.37 42.0 cos(2.41)/b

∗ 15.5336 1.51 4.39 1.70 10.26C++: total seconds; Others: average ratio

Table 7 - Full Expression Parser Benchmark Results

Each expression was evaluated 10 million times. For the C++ column, time in seconds to
carry out the evaluation is recorded. For the other four languages, the value recorded is
the ratio to the C++ time. The final row records the total C++ time to carry out 26 * 107

evaluations, and the average ratio for each of the other languages. So, compared to C++,
Fparser was the fastest of the other languages, about 1.51 times slower than C++. All of
these tests were run as embedded codes: For each language, a C++ code was built, linking
against the language or expression parser library to create an executable program.

L. Busby STEERING LANGUAGES, 8/2014

10. Appendix B: Wrapping Your Code
‘‘Wrapping code’’ is the term used for creating an interface between a scripting language
and some particular set of files written in a system language. The scripting language gen-
erally has a C API that defines what it means for the scripting language to call an external
(C) function, and vice-versa. Structure definitions, function declarations, macros and so
forth are written to allow data to be passed back and forth, and invoke operations between
the layers.

In the beginning, wrapping was a programming activity carried out by a human. (And it
still can be.) There is often a lot of regularity in the ‘‘glue’’ code that wrapping creates, so
we rapidly began to develop tools to automatically write the glue code based on some,
hopefully simpler, description of the necessary interfaces.

When the project began, I thought that evaluating wrapping technology and perhaps
directly comparing two or three of the tools would be a big part of the work. I did a little
of that, and here’s the answer: If you’re interested in wrapping Python, consider SWIG,
[SWI1] boost.python, [BOO1] and pybindgen. [PYB1] For Lua, have a look at SWIG,
tolua++, [TOL1] and Selene. [SEL1] But before you go off and spend a year, maybe read
the rest of this section.

There are many blog postings that begin with words like Well, I tried SWIG and it didn’t
do just what I wanted, so I ended up writing my own I read 6 or 8 of those before I
began to realize that there are indeed a lot of ways to interface a scripting language with a
system language. Some are general, some are aimed at particular parts of the problem,
some write especially scrutable or inscrutable code, etc. Choosing the ‘‘best’’ one is like
choosing the best color, only harder, because it’s not so obviously arbitrary. And it really
depends on the problem you are trying to solve.

If you are extending a code and need to connect lots of functions or methods to your
scripting language, SWIG is still pretty good. But a lot of people in that situation nowa-
days are using the foreign function interface in Cython (or Luajit), and effectively skip-
ping the wrapping step. Be aware that someone on your team needs to understand both
sides of the code that is wrapped, and the wrapping technology, and why the choices were
made. Understanding, for as long into the future as the code exists, is still necessary, even
if the wrapping code is generated automatically.

If you are building an embedded code system, think first about the user interface, and how
your steering language will work with that. Embedded interfaces tend to exercise the
steering language API more rigorously - the host code is doing more of the work - so it
can be harder to automate the connection. Hand wrapping can still be a good choice, or
can be a good first choice, in order to understand the problems well enough to automate
them later.

In an effort to better understand the scope of the problems, I attempted to compile some
information about how much wrapping code is actually involved in several code systems.
It is difficult to derive these values, and no little judgement is required to say whether any
particular line of code is part of the interface between the steering and system languages.
Table 8 does demonstrate that interface code can be a substantial fraction of a system.

In the table, I believe the Ares code is the only example of an embedded system among

-18-

L. Busby STEERING LANGUAGES, 8/2014

Interface(KLOC) Total(KLOC)
Code Name System Scripting System Scripting Wrapping Tool

Ares 10.1(2.2%) 0 456.5 12.6 hand-wrapped
PMESH 81.8(29%) 0 276.5 42.4 SWIG + hand-wrapped
uv-cdat 219.9(40%) 4.3(2.0%) 548.4 215.2 SWIG + hand-wrapped
pygsl+gsl 80.2(26%) 12.7(36%) 314.3 35.5 SWIG
Lasnex 359.8(54%) 44.8(61%) 671 73.9 Custom scripts
KUJO 1.7(37%) 0 4.6 0.3 tolua++

Table 8 - Interface Code Counts for Several Systems

the seven. Numbers for the others suggest that ‘‘interface code’’ may be1⁄3 to ½ of the
total code in a system. This code may be rarely encountered by most of the programmers.
However, someone must be capable of understanding the entire system. Few if any of us
really enjoy working with SWIG (for example), and that fact is part of the maintenance
problem.

-19-

L. Busby STEERING LANGUAGES, 8/2014

11. Appendix C: Comments on Some Current Languages and Programs
There is a great deal of interesting work being done, both in the area of steering lan-
guages and outside. In no particular order, here are some comments on current work that
may have an impact on our choices in the future.
1. Julia [BEZ1] is an effort to skip the clumsy parts about mixing two languages into one

code. It’s closer to a steering language than a system language, because it can be eas-
ily extended using libraries of compiled code. It attempts to have the performance of a
system language, using JIT technology. Its dependence on LLVM makes it fairly com-
plex to install and maintain, although Julia proper is still rather small (about 34 KLOC
of C, plus 74 KLOC of Lisp.) It can’t really be used in an embedded sense, and you
can’t (presently) use Julia to build object files linkable from another language. But it
has many very appealing and innovative features. Hoare [HOA1] called it a
‘‘Goldilocks’’ language. As with the protagonist of that story, I think most of us who
care, hope that Julia will succeed.

2. Terra [DEV1] is several kinds of language. As the Scimark results showed earlier in
this paper, it is a very high performance implementation of Lua. (It can run unmodi-
fied Lua code.) It mixes together Luajit, LLVM, and Clang, so it’s not trivial to set it
up and make it work. But it works pretty well in my experience so far, given how
young the project is.

The important part of Terra is something quite unexpected. The authors of Satish et al.
(2012), [SAT1] showed that optimizing memory cache performance along with small-
scale vectorization and threading could improve performance of scientific codes by a
factor that averaged over 20×. The paper was very good, and I have no issue with their
results. However, I felt the authors were a little disingenous with respect to some of
the practical difficulties around memory cache optimization, in particular. It’s hard to
do in the first place, because cut and try is about the only available strategy. It’s even
harder to do in the sense of portability. Our current system languages (C, C++, For-
tran) limit our ability to easily find the optimums, and limit our ability to express them
in a portable way.

Terra innovates on both those points. It is a low-level, strongly typed system language
that can efficiently capture the machine-level details of optimal code. And that low-
level language ‘‘Terra’’ is connected to Lua as a set of first-class objects and mecha-
nisms, so that you can use Lua to efficiently write Terra. For example, you can write
loops in Lua to parameterize the search for optimal code in Terra. Furthermore,
although Terra has some heavy dependencies as mentioned above, it is designed to
create small independent object files as an end product. So it can potentially play well
as a small fast part of a code mostly written in some other (system) language.

From my perspective, Terra is like a 50 pound diamond that fell from the sky, (only
with more obvious uses.) Even otherwise sensible people might be a little cautious in
approaching. It is definitely worth a look, but not as a steering language.

3. Torch7 [TOR1] is a machine learning toolkit, developed at Idiap Research Institute,
New York University and NEC Laboratories America. To my knowledge, it is one of
the more complete current scientific systems based on Lua and Luajit. The core of
Torch7 is a multi-dimensional array module. It also provides a plotting package, a

-20-

L. Busby STEERING LANGUAGES, 8/2014

binding to the Qt graphics framework, a binding to the Cephes special scientific
functions library, and many, many others. There seems to be a team at Facebook
developing Torch-related tools [FBL1] and utility libraries.

4. GSL-Shell [ABA1] is a Luajit based wrapper around the Gnu Scientific Library. It can
be hard to install from source, because the graphics library it uses is a bit old, but it is
very nice once it’s running. It is a fine example of the use of the Luajit foreign func-
tion interface to easily link to a C library. The GSL is a very good library of general
scientific functions, all brought to the Lua command line and made available for easy
computation and graphic display.

5. Lunatic-python, [BEC1] Lupa, [LUP1] and one of the libraries cited in the Facebook/
Torch7 [FBL1] utilities all aim to connect Lua with Python. No endorsement is made
here, only the comment that several packages to carry out such functionality do exist
already. Python and Lua each have a complete API to C, so in principle it is entirely
reasonable to connect packages in one language with a running interpreter in the other.
In practice, that would be relatively simple for simple tasks, but difficult to fully gen-
eralize. There are many alternative ways to move data between processes, of course,
so it’s not clear when or if we would ever wish to do this ourselves.

-21-

